
Ichthyop User Guide (3.3.17)

Nicolas Barrier Philippe Verley Gwendoline Andres
Christophe Lett

Table of contents

Preface 5

I User guide 6

1 Getting started 7
1.1 Prerequisites . 7

1.1.1 Java . 7
1.1.2 NetCDF4 . 7
1.1.3 Conda environmenmt . 8

1.2 Downloading Ichthyop . 8
1.2.1 Using executables . 8
1.2.2 From source . 9

1.3 Downloading hydrodynamical files . 9
1.4 Running Ichthyop . 9

1.4.1 Clicking on file (Windows) . 9
1.4.2 From command line (Unix/Mac Os X) . 9

2 Ichthyop configuration 11
2.1 Simulation configuration file . 11

2.1.1 Configuration blocks . 11
2.1.2 Configuration parameters . 12
2.1.3 Serial parameters . 13

2.2 Zone configuration file . 14
2.3 Time configuration . 15

2.3.1 Beginning of the simulation . 15
2.3.2 Reading NetCDF times . 16

3 Ichthyop console 18
3.1 Configuration . 18

3.1.1 New configuration file . 19
3.1.2 Content of the configuration file . 20

3.2 Zone definition . 21
3.2.1 Adding, removing and renaming zones . 21
3.2.2 Editing a zone . 23

2

3.3 Running . 24
3.4 Visualize results . 25

3.4.1 Results . 26
3.4.2 Set particle color . 26
3.4.3 Make maps using Web Map Service . 26
3.4.4 Export trajectories to KMZ format . 27

3.5 Animation . 27

4 FAQ 29
4.1 What to do when Ichthyop does not manage my ocean dataset 29
4.2 What to do when Ichthyop suddenly fails to launch ? 29
4.3 How to launch Ichthyop from command line ? . 29
4.4 What are the different coastline behaviours in Ichthyop? 30
4.5 How does spatial interpolation work in Ichthyop? . 31
4.6 How does Ichthyop manage time ? . 32
4.7 How does Ichthyop interpolate the hydrodynamic dataset in time ? 34
4.8 Why do I get warning “CFL broken for W 1.208” ? . 34

II Documentation 35

5 Particle release 36
5.1 Stain release . 36
5.2 Zone release . 37
5.3 Text release . 37
5.4 Patchy release . 38
5.5 Surface and bottom releases . 38
5.6 Netcdf release . 40

6 Release schedule 41

7 Ichthyop processes 42
7.1 Growth . 42

7.1.1 Linear growth . 42
7.1.2 Sole growth . 43

7.2 Lethal temperature and salinity . 43
7.2.1 Lethal temperature . 43
7.2.2 Lethal salinity . 44

7.3 Buoyancy . 44
7.4 Daily vertical migration . 45
7.5 Ontogenetic vertical migration . 46
7.6 Wind drift . 47
7.7 Random swimming . 48

3

7.8 Wave drift . 48
7.9 Coastal behaviour . 49

7.9.1 Bouncing . 49
7.10 Orientation . 50

7.10.1 Swimming velocity . 51
7.10.2 Von Mises distributions . 51
7.10.3 Computation of displacement . 52
7.10.4 Cardinal orientation . 53
7.10.5 Rheotaxis orientation . 54
7.10.6 Reef orientation . 56

III Developer documentation 63

8 Manager initialization 65

9 Particles 67

10 Grid management 70
10.0.1 NEMO grid . 70
10.0.2 ROMS grid . 84
10.0.3 MARS grid . 94

11 Adding new processes 97

12 Adding output variable 98
12.1 Creating java class . 98

12.1.1 General case . 98
12.1.2 Simple case . 100

12.2 Creating property file . 101

13 References 102

4

Preface

5

Part I

User guide

6

1 Getting started

In this section, download and install instructions are provided.

1.1 Prerequisites

1.1.1 Java

In order to run Ichthyop, Java (>= 11) needs to be installed. Beforehand, let us clarify some of the
acronyms regarding the Java technologies.

JVM: Java Virtual Machine. It is a set of software programs that interprets the Java byte code.

JRE: Java Runtime Environment. It is a kit distributed by Sun to execute Java programs. A JRE
provides a JVM and some basic Java libraries.

JDK or SDK: Java (or Software) Development Kit bound to the programmer. It provides a JRE, a com-
piler, useful programs, examples and the source of the API (Application Programming Interface: some
standard libraries).

It is strongly recommended to download a JDK, in order to both compile and run the model. Builds
for different platforms can be found here.

(nc-inst)=

1.1.2 NetCDF4

The Java library that manages input/outputs of NetCDF files requires the external NetCDF C library,
which can be installed as follows:

1.1.2.1 Mac Os X

To install the library on a Mac Os system, open a Terminal and type:

sudo port install netcdf4

7

https://www.oracle.com/java/technologies/downloads/

1.1.2.2 Linux

To install the library on a Linux system, open a Terminal and type:

sudo apt-get install netcdf4

1.1.2.3 Windows

To install the library on a Windows system, download the pre-built libraries ib Unidata website

Caution

During the install process, make sure that the location of the library is added to the PATH

1.1.3 Conda environmenmt

There also is the possibility to use Conda environments in order to install Maven, OpenJDK and
NetCDF4 easily. Instructions can be found on https://github.com/ichthyop/ichthyop-conda

1.2 Downloading Ichthyop

The Ichthyop model is available on GitHub. There is two ways to recover Ichthyop:

• Using executable files (.jar files).
• From source files.

1.2.1 Using executables

Ichthyop users can download Ichthyop executables here. Choose a version, and download the
{samp}ichthyop-X.Y.Z-jar-with-dependencies.jar file (replacing {samp}X.Y.Z by the version
number).

8

https://docs.unidata.ucar.edu/netcdf-c/current/winbin.html
https://github.com/ichthyop/ichthyop-conda
https://github.com/ichthyop/ichthyop
https://github.com/ichthyop/ichthyop/releases

1.2.2 From source

To get the source code, type in a Terminal (Unix/MacOs) or Git Bash prompt (Windows):

git clone https://github.com/ichthyop/ichthyop.git

The code can then be compiled either using IDE (NetBeans, VSCode) or using the following command
line:

mvn package

The executable will be generated in the target folder.

Warning

To use the command line, Maven needs to be installed (see instructions on https://maven.apac
he.org/install.html)

1.3 Downloading hydrodynamical files

To run Ichthyop templates, sample hydrodynamical files are required (input folder). They were
previously part of the GitHub repository but have beenmigrated to Zenodo. They can be downloaded
here.

1.4 Running Ichthyop

1.4.1 Clicking on file (Windows)

Open the Ichthyop folder and double click on the ichthyop-X.Y.Z-jar-with-dependencies.jar
file, where X.Y.Z is the Ichthyop version. You should see the Ichthyop console.

1.4.2 From command line (Unix/Mac Os X)

Open a command line prompt (Terminal or CMD prompt) and navigate to the Ichthyop folder using
cd.

Then, type:

9

https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://doi.org/10.5281/zenodo.10890690

java -jar ichthyop-X.Y.Z-jar-with-dependencies.jar

with X.Y.Z the Ichthyop version.

This will prompt the Java console. In order to run Ichthyop without the console, you need to specify
a supplementary argument, which is the XML configuration file.

java -jar ichthyop-X.Y.Z-jar-with-dependencies.jar cfg-roms3d.xml

10

2 Ichthyop configuration

2.1 Simulation configuration file

Ichthyop simulations are configured using XML configuration files. It should always start as fol-
lows:

<icstructure>
<long_name>Generic Ichthyop configuration file</long_name>
<description>The file has few pre-defined parameters.</description>

</icstructure>

2.1.1 Configuration blocks

Ichthyop is configured by blocks, each block managing a specific aspect of the model. The blocks are
as follows:

• ACTION: Block of parameters related to the action classes (cf. {numref}process).
• RELEASE: Block of parameters related to the release classes (cf. {numref}release)
• DATASET: Block of parameters related to the datasets classes.
• OPTION: Block of parameters related to the remaining parameters.

New blocks can be added in the XML file as follows:

<block type="option">
<key>app.transport</key>
<enabled>true</enabled>
<tree_path>Transport/General</tree_path>
<description>Set the general transport options of the simulation.</description>

</block>

The key tag is used to identify the configuration block. The tree_path tag is used in the Ichthyop
console to create the parameter tree. The description field is used to display the block description
in the Ichthyop console.

11

https://en.wikipedia.org/wiki/XML

The enabled tag specifies whether the block should be considered by Ichthyop or not. By default, all
blocks are enabled. But for the RELEASE and DATASET, one and only one block must be activated.

2.1.2 Configuration parameters

To each block is associated a list of parameters. This list of parameter is added in the XML as fol-
lows:

<parameters>
</parameters>

Inside the parameters tags, new parameters are defined as follows:

<parameter>
<key>output_path</key>
<value>output</value>
<long_name>Output path</long_name>
<format>path</format>
<default>output</default>
<description>Select the folder where the simulation NetCDF output file should be saved.</description>

</parameter>

The key tag allows to identify the parameter, while the value tag specifies the value of the parameter.
The remaining tags are only used by the Ichthyop console. The long_name and description tags
are used by the console to provide informations about the parameter.

The format tag specifies the parameter format, which will be used by the console parameter editor.
The accepted values are:

• path: For files and folders
• date: For dates (format must be year YYYY month MM day at HH:MM)
• duration: For duration (format must be ###### day(s) ### hour(s) ### minute(s))
• float: For real values
• integer: For integer values.
• class: For class parameters. It allow the user to choose an existing Ichthyop class in the
configuration file.

• list: For a list of string parameters, separated by ,
• boolean: For boolean parameters. It allows the user to select true or false using a simple
combo box.

• combo: For parameters with a limited set of values, which can be selected in the console with
a combo box.

• lonlat: For geographical coordinates.

12

In the case of combo parameters, the list of accepted parameters is specified by providing as many
accepted tags as necessary. For instance:

<parameter>
<key>time_arrow</key>
<long_name>Direction of the simulation</long_name>
<value>forward</value>
<format>combo</format>
<accepted>backward</accepted>
<accepted>forward</accepted>
<default>forward</default>
<description>Run the simulation backward or forward in time.</description>

</parameter>

If a parameter should appear as hidden in the Ichthyop console, it can be specified by adding the
hidden="true" argument to the parameter tag, as shown below:

<parameter hidden="true">
</parameter>

2.1.3 Serial parameters

In order to test different values for a given parameter, a serial tag can be added as follows:

<parameter type="serial">
</parameter>

Different values are provided by replicating the value parameter as follows:

<parameter type="serial">
<key>initial_time</key>
<long_name>Beginning of simulation</long_name>
<value>year 2001 month 10 day 20 at 00:00</value>
<value>year 2001 month 10 day 21 at 00:00</value>
<format>date</format>
<description>Set the beginning date and time of the simulation. Format: year ###### month ### day ### at HH:mm.</description>

</parameter>

13

Caution

Using the GUI, additionnal values can be provided to serial parameters only when
hidden parameters are displayed

When simulations are run with serial parameters, all possible combinations of parameters will be
run. Output files will contain a _sX suffix, with X the simulation number. The parameters used in the
simulation are provided as global NetCDF attributes.

2.2 Zone configuration file

Zone configuration files are also managed via a dedicated XML file. The file must be as follows:

<?xml version="1.0" encoding="UTF-8"?>
<zones>

</zones>

Each zone is defined on a zone tag, which contain the following tags:

• key is the name of the zone
• enabled specifies whether this zone must be considered or not.
• type specifies whether the zone should be used for release (see :numref:, ``release value)
or recruitment processes (recruitment value)

• polygon specifies the different points used to define the area
• bathy_mask specifies the bathymetric zone (for instance 0 to 200m, i.e. continental shelf) where
the zone is defined.

• thickness specifies the upper and lower depths where this zone is defined (only valid for 3D
runs).

• color specifies the display color of the zone (format is [r=102,g=51,b=255]).
• proportion_particles specifies the proportion (values in [0 − 1]) of particles to be released
in the area. Only used when type is release and if the user_defined_nparticles parameter
is set to True (cf. {numref}zone-release)

An example of a zone definition is provided below.

<zone>
<key>Release zone 2</key>
<enabled>true</enabled>
<type>release</type>
<polygon>

14

<point>
<index>0</index>
<lon>54.0</lon>
<lat>-11.5</lat>

</point>
<point>

<index>1</index>
<lon>54.0</lon>
<lat>-12.5</lat>

</point>
<point>

<index>2</index>
<lon>53.0</lon>
<lat>-12.5</lat>

</point>
<point>

<index>3</index>
<lon>53.0</lon>
<lat>-11.5</lat>

</point>
</polygon>
<bathy_mask>

<enabled>true</enabled>
<line_inshore>0.0</line_inshore>
<line_offshore>12000.0</line_offshore>

</bathy_mask>
<thickness>

<enabled>true</enabled>
<upper_depth>0.0</upper_depth>
<lower_depth>50.0</lower_depth>
</thickness>

<color>[r=102,g=51,b=255]</color>
<proportion_particles>0.2</proportion_particles>

</zone>

2.3 Time configuration

2.3.1 Beginning of the simulation

In Ichthyop, the user provides the time at which the simulation should start. This initial_time
parameter, which must be defined in the app.time option block, must be formatted as year YYYY

15

month MM day DD at HH:MM, with YYYY the year, MM the month, DD the day, HH the hour and MM the
minutes where the simulation should start.

2.3.2 Reading NetCDF times

When reading a NetCDF file (ocean currents, temperature, wind, wave, etc.), Ichthyop will determine
the units in which NetCDF time is stored. These units must meet the CF Metadata Conventions and
therefore be provided as follows:

UNITS since YYYY-MM-DD HH:MM:SS

with UNITS the units in which the time is stored (usually seconds, days or hours), YYYY the year, MM
the month, DD the day, HH the hour, MM the minutes and SS the seconds of the reference date.

If a NetCDF time::units attribute is defined, Ichthyop will try to infer the NetCDF reference date
and time units using this convention.

If it fails (i.e. the time::units attribute does not follow the convention) or if no time::units at-
tribute is found, Ichthyop will read the time_origin parameter from the app.time option block,
which must be defined following the CF conventions.

Caution

When reading two datasets (an ocean currents dataset and a wind dataset for instance), if none
meets the CF convention, Ichthyop will apply the units defined in the time_origin parameter
to both datasets, even though they may have different time units. Therefeore, in this case,
it is strongly recommended to manually include CF-like time units attributes to each
dataset (cf. below).

Manually updating the units attribute can be done by using the ncatted command (Linux users):

#!/bin/bash
for file in *nc
do

ncatted -O -a units,time,o,s,"seconds since 1900-01-01 00:00:00" $file
done

This can also be done by using Python as follows:

16

https://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/build/ch04s04.html
https://linux.die.net/man/1/ncatted

from glob import glob
import xarray as xr

units = 'seconds since 1900-01-01 00:00:00'
time = 'time'

filelist = glob('*nc')

for f in filelist:

data = xr.open_dataset(f)
data[time].attrs['units'] = units
data[time]

data.to_netcdf(f)

Note

The user must replace time by the name of the time variable which is used by Ichthyop. Com-
mon values are time, scrum_time, time_counter, ocean_time.
The units value must also be chosen consistently with the dataset

17

3 Ichthyop console

In this section, the Ichthyop console is described.

3.1 Configuration

Here you will find the usual “File menu” functions : create a new configuration file, open an existing
one, close it or save and save as the configuration file.

Figure 3.1: Step 1, configure

18

3.1.1 New configuration file

Figure 3.2: Step 1, create a new configuration file

The application comes with some preset examples of configuration files (the templates). Select one
of the templates, change the name of the configuration if the suggested name does not suit you and
click on the Create button.

19

3.1.2 Content of the configuration file

Figure 3.3: Step 1, edit the configuration file

The configuration file is organized in several categories and each category contains several blocks of
parameters.

When the configuration file is created out of a template, it is ready to use and you do not need to
change any parameter for running the simulation. Little by little you can explore the configuration
file, starting with the “Main” blocks and change some parameters to see what is happening. On a sec-
ond time you can start playing with the advanced parameters that activate and control the behaviors
of the particles.

Main blocks:

20

• Time: Set the simulation time options, such as the beginning of the simulation, the duration of
transport, the time step, etc.

• Output: Options that control the record of the particle tracks in a NetCDF output file.
• Dataset: Management of the hydrodynamic dataset.
• Release: Determine how and where the particles should be released.

Advanced blocks:

• Transport: Parameters for controlling the advection process, the dispersion, the vertical migra-
tion, the wind drift, etc.

• Release: Additional ways for releasing particles, from zones, with position recorded in a text
file or in a NetDCF file, etc.

• Biology: Control the biological processes such as growth or cold water sensitivity, etc.

Each block is fully described and commented in the block information area. As well, you will find a
description and the necessary explanations for each parameter in the parameter information area.

Warning

Do not forget to save the configuration file before going to the next step.

Caution

Parameters cannot be added from within the Ichthyop console. Only paramters that
are already defined on the XML file can be edited using the console

3.2 Zone definition

In Ichthyop, the user can define zones, either release zones or recruitment zones.

The zones can be edited using the GUI, as shown in Figure 3.4

3.2.1 Adding, removing and renaming zones

The number of zones is managed on the left part of the panel.

New zones can be added by clicking the button. When a zone is selected, it can be removed by

clicking on the button.

21

Figure 3.4: Ichthyop Zone editor

22

The reordering of the zones is achieved by clicking on the and but-
tons.

When double-clicking on the name of the zone on the left panel, the user can edit the zone name.

3.2.2 Editing a zone

When a zone is selected, the user can edit different parameters associated with the zone.

First, the user can enable or disable a zone by clicking on the {guilabel}Enabled tick box.

The zones are defined by providing the points coordinates. Points can be added, removed and re-

ordered by using the , , and buttons, respectively. The user
can also change the format of the points coordinates by clicking on the radio buttons in the Options
bottom panel.

Ichthyop defines two types of zones: one for release (see Section 5.2) problèmeand one for re-
cruitment purposes. This type is chosen by using the Type of zone combo box. For release
zones, the user can specify the number of particles that will be released in the zone (only if the
user_defined_nparticles parameter is set equal to true, cf Section 5.2). It is done by filling the
Number of released particles textbox and pressing ENTER

Each zone is associated with a color, that will be used to its representation in the graphical interface
during the preview and the display of the simulation results. This color can be edited by using the

button.

In the case of 3D simulations, you can specify the depth range to use in the zone. To activate this
feature, click on the Activated tick box of the Thickness panel. You can provide the lower and
upper depth that must be considered in the given zone (negative values).

23

In 3D simulations, you can also specify the bathymetric range that you want to include, for instance
if you want to release particles only on the ocean shelf (i.e depth less than 200m). This can be done
by activating the feature by clicking on the Activated tick box of the Bathymetric mask panel.

3.3 Running

Figure 3.5: Step 2, simulation

You may want to preview the simulated area. Click on the “Preview” button. The main interest in
previewing the area is that the application will check if the simulation is correctly set up. Here “cor-
rectly” does not mean you made a relevant parametrization in terms of physics or biology, but at
least the application had found all the parameters required for starting the simulation. More specif-
ically, Ichthyop will attempt to read the geographical variables (longitude, latitude and depth) from
the dataset in order to draw the area. It should also display the release and the recruitment zones if
they have been defined and activated in the configuration file. Make sure what you see is what you
expect, and go back to “Step 1: configure” in case not.

When the preview is satisfactory, click on “Run simulation” for starting the simulation. The progress
bar will give an estimation of the remaining time for the simulation to complete. You can interrupt
(but not pause) the simulation anytime by a click on “Stop simulation”.

Depending the capabilities of your computer, the number of released particles, how many actions are
implemented, etc. the simulation might requires a large amount of the available dynamic memory
and the application might look like it is frozen. Wait until the simulation run to completion. Refer to
section “Java Heap Space” if the application crashes because of memory problem.

24

3.4 Visualize results

Figure 3.6: Step 3, mapping

25

When the simulation is completed, the application automatically opens the current Ichthyop output
file for visualizing the results. If your computer is connected to Internet, you should see the map
being centered above the simulated area. Otherwise, it only displays a Grey background.

You may want to skip that step or keep it for later. In that case, just click on “Close NetCDF” and
go to any other steps or exit the application. Any time, you can go back to this step: click on “Open
NetCDF” and select the Ichthyop output file you wish to visualize. When the NetCDF file is opened,
the application brings you back to the exact point where it was when the simulation just completed.

The application offers two ways for visualizing the results : draw the particle trajectories with a Web
Map Service or export the particle trajectories in a KMZ file that can be opened with Google Earth.
Both functions are completely independent one from another.

3.4.1 Results

Ichthyop archives the particle trajectories in NetCDF format, a machine-independent data formats
for sharing array-oriented scientific data. The NetDCF file is recorded in the output folder (set in the
Output section of the configuration file) and the file name contains the date and time of creation of
the file.

Default contents of the NetCDF output file: time of the simulation, longitude, latitude, and depth at
particle position, and mortality status.

3.4.2 Set particle color

The Default color button determines the particle color for visualizing the trajectories.

Particles are plotted as small circles. Particle size determines the diameter of the circle in pixel.

To use a colorbar, select in the Combo box a variable archived in the Ichthyop output file you wish to
visualize as a tri-color range. The Auto range button will scan the values of the variable and suggest
the following range : [mean - 2 * standard deviation; mean + 2 * standard deviation]. Do not forget
to click on Apply settings for validating the changes of the color bar.

For taking off the color bar, select the None item in the Combo box and click on Apply settings. A
click on Default color button should also deactivate the color bar.

3.4.3 Make maps using Web Map Service

According to Wikipedia, a Web Map Service (WMS) is a standard protocol for serving georeferenced
map images over the Internet.

Ichthyop provides three different WMS for displaying the ocean bathymetry and the cost line as a
background of the particle trajectories.

26

Maps can be intuitively zoomed in and out with the mouse wheel and re-centered doing a mere drag
and drop.

Depending on the quality of the Internet connection and how busy is theWebMap Server, the display
of the background tilesmight take awhile or even notwork at all. In that case, try againwith a distinct
WMS and change the zoom scale.

When the settings of the map looks satisfactory, click on “Make maps” button. Ichthyop will create
a folder that has exactly the same name than the simulation NetCDF output file (without the .nc
extension) in the output directory. Then maps are recorded in this folder as PNG pictures.

Again, depending on the computer capabilities and the number of particles, the map creation might
require a large amount of the available dynamic memory and the application looks like it is frozen.
Wait for the application to complete this step. Refer to section “Java Heap Space” if the application
crashes because of memory problem.

3.4.4 Export trajectories to KMZ format

By default, Ichthyop records the particle trajectories in NetCDF format. It is perfectly adapted for
archiving and sharing scientific data since it is a machine independent and array-oriented format.
But it is not much handy for visualizing results.

Click on “Export to KMZ” button for recording the particle trajectories into a KMZ file. The file is
recorded in the same directory than the Ichthyop output file, with the same name and the “.kmz”
extension. KMZ format is the standard file format for visualizing georeferenced information with
GoogleEarth.

Color settings (default color or color bar) and particle size will also be stored in the KMZ file.

When the export has performed, browse to the output folder and click on the KMZ file for launching
GoogleEarth (assuming the program is installed on your computer).

3.5 Animation

Here you will find the usual “File menu” functions : create a new configuration file, open an existing
one, close it or save and save as the configuration file.

27

Figure 3.7: Step 4, Animation

You may want to skip that step or keep it for later. In that case, just go to any other steps or exit the
application. Any time, you can go back to this step, click on “Open maps” and select the simulation
output folder that contains the PNG pictures you wish to visualize. When the folder is opened, the
application brings you back to the exact point where it was when the map creation just completed.

Set the number of frames per second of the animation with the spinner.

You can also create an animated GIF. The file is recorded in the same directory than the Ichthyop
output file, with the same name and the “.gif” extension.

28

4 FAQ

4.1 What to do when Ichthyop does not manage my ocean dataset

Ichthyop developers cannot manage all the different ocean datasets that exist. First, there are too
many of them which rely on different assumptions, such as grid layout, vertical coordinates, etc.

Therefore, the Ichthyop developers have decided to first focus on the most used datasets, i.e. NEMO,
MARS, ROMS and ocean datatasets that are stored on regular grid.

If your model does not belon to the list, one possibility is to do a bit of pre-processing, in order to
convert your input files to a regular, depth-based ocean grid. Different tools can help you with that,
such as the XESMF Python package.

4.2 What to do when Ichthyop suddenly fails to launch ?

Situation: without apparent reason, Ichthyop fails to launch, either from GUI or command line. It
looks like it starts and crashed instantly.

Solution: delete Ichthyop persistence files (the files that store the information to restart your ichthyop
session as it was when you last closed it) InWindows environment such files are gathered in a hidden
directory ~/AppData/Local. In this folder delete the ichthyop directory of the previmer/ichthyop
directory. In Linux or Mac environement delete the ~/.ichthyop folder. Try to run Ichthyop again.

4.3 How to launch Ichthyop from command line ?

First you have to open a command prompt window on your computer.

For Linux or Mac users open a new Terminal (type Terminal in the Application search bar or the
Finder if you are unsure how to open a terminal).

For Windows users, click on the start button > All programs > Accessories > Command Prompt (read
more)

From the command prompt windows you need to change the current directory (by default your home
directory) to the Ichthyop directory. For instance

29

https://xesmf.readthedocs.io/en/latest/

cd projects/ichthyop/ichthyop-3.2
or
cd Mes\ Documents/Ichthyop/ichthyop-3.2

Assuming that in the first case that your ichthyop folder is in directory projects/ichthyop/ichthyop-
3.2 and in the second case in directory MesDocuments/Ichthyop/ichthyop-3.2.

List the folder content to check that you are in the right directory : type dir inWidows and ls in Linux
or Mac environment.

Launch Ichthyop, with UI, from command line:

java -jar ichthyop-3.2.jar

Launch Ichthyop, without UI, from command line:

java -jar ichthyop-3.2.jar cfg/your_configuration_file.xml

With your_configuration_file.xml the name of the XML configuration files that you first created from
the UI and that you saved in the cfg/ folder.

4.4 What are the different coastline behaviours in Ichthyop?

First you may want to read {numref}spatial-int

Coastline behaviour manages what must be done in the event that the move of a particle takes it
inland (which might happen because the simulation time step is not small enough or because there
is some additional movement, such as diffusion or swimming, etc.)

Ichthyop offers four different behaviours at coastline:

• NONE: Ichthyop ignores the fact that it is land and just carries on moving the particle around.
• BEACHING: Ichthyop does move the particle inland but “kill” it. From now onward the particle
is out of the simulation.

• BOUNCING: the coastline acts as a billard edge and the particle will bounce as a billard ball
in the events that the move would take it beyond the coastline. The particle bounces back as
much as it would penetrate inland.

• STANDSTILL: the particle gives up on the move that would take it inland and just wait until
next time step for trying an other move.

(spatial-int)=

30

4.5 How does spatial interpolation work in Ichthyop?

A particle in Ichthyop only knows about its environment what is provided by the outputs of the
hydrodynamic model. Such information, for instance the zonal and meridional current velocities, are
usually provided on an Arakawa C-grid, every U-point and V-point respectively.

Here is the 2D scheme of cells (i, j) bottom left, (i+1, j) bottom right, (i, j+1) top left and (i+1, j+1) top
right.

:::{figure} _static/spatial_interpolation.png :align: center

Particle current location at {samp}X(x, y, z) :::

Let’s see how the interpolation works for both zonal and meridional velocities. The question we ask
is what is the value of U and V at particle location?

We have i=round(x), j=truncate(y) and k=truncate(z), dx=x-i, dy=y-j, dz=z-k

Let’s call t, the current time of the simulation, and t0 and t1 the values of the time NetCDF variable
bounding t: t0 <= t < t1

We first interpolate the model velocity field at t0:

:::{figure} _static/spatial_interpolation_u(1).png :align: center :::

This large expression can be narrowed down to:

U(t0, x, y, z) = SUM(U(t0, i+ii-1, j+jj, k+kk) * |(0.5-ii-dx) * (1-jj-dy) * (1-kk-dz)| , ii in [0,1], jj in [0,1], kk in [0,1])

with i=round(x), j=truncate(y), k=truncate(z), dx=x-i, dy=y-j, dz=z-k

Similarly, the meridional velocity can be expressed as:

V(t0, x, y, z) = SUM(U(t0, i+ii, j+jj-1, k+kk) * |(1-ii-dx) * (0.5-jj-dy) * (1-kk-dz)| , ii in [0:1], jj in [0:1], kk in [0:1])

with i=truncate(x), j=round(y), k=truncate(z), dx=x-i, dy=y-j, dz=z-k

It means that the velocity, either zonal or meridional, at particle location is the result of a trilinear
interpolation of the height (four above, four below) surrounding velocities in the grid.

Same with U(t1, x, y, z) and V(t1, x, y, z)

Let’s take frac = (t - t0) / (t1 - t0). Then we have

U(t, x, y, z) = (1 - frac) * U(t0, x, y, z) + frac * U(t1, x, y, z)

V(t, x, y, z) = (1 - frac) * V(t0, x, y, z) + frac * V(t1, x, y, z)

31

This is the general case when all the surrounding cells are in water. Now what happened if the
particle is in a cell adjacent to the coast? Let’s say that in our example cell(i+1,j) and cell(i+1, j+1) are
land. Basically the interpolation is limited to the four (two above and two below) closest surrounding
velocity points:

U(t0, x, y, z) = SUM(U(t0, i+ii-1, j, k+kk) * |(0.5-ii-dx) * (1-dy) * (1-kk-dz)| , ii in [0,1], kk in [0,1])

V(t0, x, y, z) = SUM(U(t0, i, j+jj-1, k+kk) * |(1-dx) * (0.5-jj-dy) * (1-kk-dz)| , jj in [0:1], kk in [0:1])

In order to determine whether a particle is close to the coastline, Ichthyop proceeds in two steps: it
first determines in which quater of the cell the grid point is located. Then it checks wether or not the
three adjacent cells to this quater are in water.

:::{figure} _static/spatial_interpolation_coast.png :align: center :::

X1 will be considered as “close to coast” if any of cells (i,j+1) (i-1,j) (i-1,j+1) is on land.

X2 will be considered as “close to coast” if any of cells (i,j+1) (i+1,j) (i+1,j+1) is on land.

X3 will be considered as “close to coast” if any of cells (i,j-1) (i+1,j) (i+1,j-1) is on land.

X4 will be considered as “close to coast” if any of cells (i,j-1) (i-1,j) (i-1,j-1) is on land.

4.6 How does Ichthyop manage time ?

Time management is tricky to handle because on the computer side a given time is usually ex-
pressed as a number of seconds elapsed since a time origin (e.g. 13629116520 seconds elapsed between
1900/01/01 00:00 and 2014/09/04 09:42), whereas the user expects to read time in a human readable
format (e.g. 2014/09/04 09:42).

Ichthyop is no different: the program itself only understands a time as a number of seconds elapsed
since a time origin, just like the hydrodynamic datasets ROMS, MARS, NEMO, etc. and time displayed
in the console or the GUI uses a human readable format. Since time in the hydrodynamoc dataset
is expressed as a number of seconds elapsed since a time origin, Ichthyop must be able to convert a
human readable time (for example the time of begining of the simulation) into a number of seconds,
so that it can compare this given time value to the time vector of the hydrodynamic dataset and
interpolate the velocity fields at the correct time step. The key issue is how to convert a human
readable time into a number of seconds elapsed since a time origin ?

In order to do so, we need a calendar that basically details howmany days (a day is always considered
as a 24h period) are there in each month for each year. Since Ichthyop has to read some variables from
the hydrodynamic dataset at a given time, we must make sure that Ichthyop uses the same calendar
than the hydrodynamic dataset.

32

The default calendar used by Ichthyop is the Gregorian calendar (the most widely used civil calendar),
the one we use for our daily life. The time origin is set by default at 1900/01/01 00:00. This value can
be changed in the configuration file, in the {guilabel}Time section: tick the {guilabel}Show hidden
parameters checkbox, change parameter {guilabel}Type of calendar to Gregorian calendar and
adjust the value of parameter {guilabel}Origin of time so that it matches the origin of time set in
the hydrodynamic dataset. Such information usually comes as an attribute of the time variable in the
NetCDF output files of the hydrodynamic dataset.

Nonetheless some hydrodynamic simulations run with a different calendar than the Gregorian cal-
endar. So far, Ichthyop includes an other calendar that we called the Climatology calendar. It is a
commonly used calendar for climatological simulations, a year is divided in 12 months of 30 days each.
In order to select this calendar from the editor of configuration, go to the {guilabel}Time section, tick
the {guilabel}Show hidden parameters checkbox and select the Climatology calendar for parameter
{guilabel}Type of calendar. The origin of time for the climatology calendar is set at 01/01/01 00:00
and cannot be changed.

Let’s sum up the steps involved in the time management, using the example of the time of beginning
of the simulation:

• user provides a time for the beginning of the simulation 2014/09/04 09:42 ;
• user sets up the calendar to be used in Ichthyop, the same one that has been used in the hydro-
dynamic dataset, e.g. Gregorian calendar with origin of time 1900/01/01 00:00 ;

• Ichthyop converts 2014/09/04 09:42 into a number of seconds using the user-defined calendar,
13629116520 seconds ;

• Ichthyop scans the time variable of the hydrodynamic dataset and identifies that time value
13629116520 falls in between time step 5 and 6 of the hydrodynamic time step (time step 5 and
6 are just an example) ;

• Ichthyop can perfom the time integration of the velocity fields between time steps 5 and 6 of
the hydrodynamic dataset and starts advecting the particles.

We provide a very simple utiliy programs in the Time converter repository, that illustrates how
Ichthyop performs the time conversion, given a calendar and a time of origin.

Last bu not least: what if your hydrodynamic dataset uses an other calendar than Gregorian or Cli-
matology calendars? Two options:

1. Contact the developpers and ask how much work would it be to include your calendar in
Ichthyop ?

2. Select an existing calendar that is the most similar to yours and trick Ichthyop by providing
a human readable time that you know it will be converted in the correct time value for the
hydrodynamic dataset (thanks to the Time converter utility program).

33

https://en.wikipedia.org/wiki/Gregorian_calendar
https://github.com/ichthyop/ichthyop-timeconverter

4.7 How does Ichthyop interpolate the hydrodynamic dataset in
time ?

Let’s say that the hydrodynamics output dataset is archived with a 5 days time step and Ichthyop
runs with a 1 hour time step.

Let’s call tn a given time index in the hydrodynamic dataset and tnp1 the following one. And let’s
call Tr a variable from the dataset (either current velocity, temperature, free surface elevation, etc.).
Let’s call time the time variable of the hydrodynamic dataset, always expressed in seconds elapsed
from a given origin.

Ichthyop does a linear interpolation to estimate the value of Tr at any given time between time(tn)
and time(tnp1). For t, a given time index such as time(t) >= time(tn) and time(t) < time(tnp1), we have
:

Tr(t) = (1 - x) * Tr(tn) + x * Tr(tnp1)

with x = (time(t) - time(tn)) / (time(tnp1) - time(tn))

4.8 Why do I get warning “CFL broken for W 1.208” ?

CFL stands for Courant–Friedrichs–Lewy condition. It is a necessary condition for stability while
solving the equation of movement in Ichthyop.

We want at all time (U * dt) / dX stricly inferior to 1 with U the velocity (vertical in this specific
case) and dX the move. The warning informs you that the CFL condition has been broken for
the vertical velocity and that it might jeopardize the numerical stability of the model.

Try to decrease the time step (dt) in your configuration file (Time > Time step), let’s say divide it
by two. As explained in the configuration editor, an acceptable estimation for dt could be dt = 0.7 *
dGrid / Umax with dGrid the average length of the grid cells and Umax the order of magnitude of the
fastest current velocities in the hydrodynamic model (locally and punctually the vertical velocities
can be intense). Nonetheless the smaller the better and as long as decreasing the time step does not
slow down too much your simulations, you should always go for a smaller value that the previous
estimation.

34

https://en.wikipedia.org/wiki/Courant%E2%80%93Friedrichs%E2%80%93Lewy_condition

Part II

Documentation

35

5 Particle release

In the present section, the different release processes that are implemented within Ichthyop are
described. The parameters that are associated with the release processes must be included within
release blocks (cf. Section 2.1).

5.1 Stain release

The release stain (StainRelease.java) consits of releasing particles within a given circle. The user
provides the longitude and latitudes of the release stain, the radius of the release stain (in 𝑚) and the
number of particles to release.

For a 3D simulation, the user also provides the depth and the thickness of the release stains (both in
𝑚).

An example of a stain release is provided in Figure 5.1

Figure 5.1: Example of a stain release.

36

5.2 Zone release

The zone release method (ZoneRelease.java) allows to release particles in different areas, which are
defined in an XML zone file (zone_file parameter).

By default, the number of particles released in each zone (𝑁𝑘) is equal to

𝑁𝑘 = 𝑁𝑡𝑜𝑡 ×
𝑆𝑘

∑𝑁
𝑖=1 𝑆𝑖

with𝑁𝑡𝑜𝑡 the total number of released particles, 𝑆𝑘 the surface of the 𝑘𝑡ℎ release area and𝑁 the number
of release areas.

However, if the user_defined_nparticles parameter is set equal to true, then the proportion of
the particles to release in each zone is defined by the user.

An example of zone release is provided below.

Figure 5.2: Example of a zone release.

5.3 Text release

If the user wants to simulate some specific trajectories, for instance DCPs or buoys, particles can
be relased by providing a text file containing the release coordinates (TxtFileRelease.java). The

37

name of the text file is given by the txtfile parameter.

The file must be formatted as follows:

3D simulations
longitude latitude depth
-5.45 48.30 -5
-5.45 48.30 -10
-5.45 48.30 -15
-5.45 48.30 -20

Each line is a drifter. Each character starting with # is considered as a comment. If the depth column
is not provided, depth will be set equal to 0.

For 2D simulations, the depth column will be ignored.

Caution

Note that the columns must be separated by spaces.

5.4 Patchy release

The patchy release method (PatchyRelease.java) can be viewed as an extension of the release stain
method, where several stains are randomly created.

The number of stains is given by the number_patches parameter. The number of particles per stain
is given by the number_agregated parameter. The radius and thickness (if 3D simulation) for each
patch is given by the radius_patch and thickness_patch parameters, respectively.

Additionnally, there is the possibility to release patches in each release zone. This is achieved by
setting the per_zone parameter to true. An example is provided in Figure 5.3.

If this parameter is set to false, the bounding box around the defined release zones (if any) or the full
domain is used to release the patches, as shown in Figure 5.4.

5.5 Surface and bottom releases

The surface and bottom release methods (SurfaceRelease.java and BottonRelease.java) allow
to randomly release particles over the entire domain, either on the surface or at the bottom (for 3D
simulations only).

38

Figure 5.3: Example of a patchy zone release.

Figure 5.4: Example of a patchy uniform release.

39

The only parameter required by these methods is the number of particles (number_particles param-
eter). There is no control over the area where the particles are released.

An example of a surface release is shown in Figure 5.5.

Figure 5.5: Example of a surface release.

5.6 Netcdf release

Ichthyop also offers the possibility to use an Ichthyop output file as a simulation starting point
(NcFileRelease.java). This initialization method only takes a ncfile parameter, which provides
the location of the NetCDF to use as a restart.

40

6 Release schedule

In Ichthyop, there is the possibility to schedule release events. These events are parameterized in the
release.schedule option block.

It mainly contains two parameters:

• is_enabled specifies whether release events schedule is activated or not
• events is list of release date strings, which are formatted as the beginning simulation parameter
(year YYYY month MM day DD at YY:MM).

The resulting output file will contain the same number of time-steps as in the case of a simple release,
but the number of particles will be multiplied by the number of release events.

Warning

The output time array will be consistent with the beginning simulation time (initial_time
parameter), not with the release schedule dates.

41

7 Ichthyop processes

In this section, the different Ichthyop processes are described. These processes are implemented in
the classes within the action folder.

Parameters associated with these processes must be included in action blocks. They can be activated
or deactivated by setting the enabled tag (cf. Section 2.1).

7.1 Growth

There is 2 different implementations of the growth module. They can be selected by setting the
class_name parameter in the action.growth action configuration block.

7.1.1 Linear growth

To use the linear growthmethod described in Lett et al. (2008), choose the LinearGrowthAction.java
class.

Length increment is provided as follows:

Δ𝐿 = 𝐶1 + 𝐶2 × 𝐹
𝐹 + 𝐾𝑆

× 𝑚𝑎𝑥(𝑇 , 𝑇𝑡ℎ𝑟𝑒𝑠) × Δ𝑡

where Δ𝑡 is the time-step (in days), 𝐶1 and 𝐶2 are parameters (coeff1 and coeff2), 𝑇𝑡ℎ𝑟𝑒𝑠 is a tem-
perature threshold (threshold_temp parameter), 𝐹 is the food quantity and 𝐾𝑆 is a half-saturation
constant (half_saturation parameter). If the latter is not defined or equals 0, 𝑄 is assumed to be
1.
The name of the food and temperature variables are provided by the food_field and temperature_field
parameters.

42

7.1.2 Sole growth

If the {samp}SoleGrowthAction.java class is selected, the growth model used in Tanner et al. (2017)
is used. It relies on the growth equation from Fonds (1979) and given by:

Δ𝐿 = 𝐶1 × 𝑇 𝐶2 × Δ𝑡

with 𝐿 the length, 𝑇 the temperature and Δ𝑡 the time step in days, and 𝐶1 and 𝐶2 are parameters (c1
and c2 respectively).

The temperature field is provided by the temperature_field parameter.

7.2 Lethal temperature and salinity

In Ichthyop, there is the possibility to define a range of temperature and salinity beyond which the
particle is killed.

7.2.1 Lethal temperature

The functionning og the lethal temperaturemodule depends onwhether the growthmodule is enabled
or not.

7.2.1.1 Growth disabled

lethal temperature can either be provided in a CSV file (lethal_temp_file parameter), which pro-
vides the lower and upper temperature values that can be supported by the particle as a function of
age (in hours). The file must have the following format:

Time(hour);Cold temperature (C);Warm temperature (C)
0;14;22
48;13;22
96;12;22

In this case, three age classes will be considered: [0, 48[, [48, 96[and [96,∞[
If the lethal_temp_file parameter is not defined, single values will be used independently of the
age. These values are provided in the cold_lethal_salinity_egg and warm_lethal_salinity_egg
parameters.

Note that the temperature_field parameter, providing the name of the temperature variable, must
also be provided.

43

7.2.1.2 Growth enabled

If the growth module is enabled, two cold and warm lethal temperatures must be provided. One
for eggs (cold_lethal_temperature_egg and hot_lethal_temperature_egg), one for larva
(cold_lethal_temperature_larva and hot_lethal_temperature_larva).

The stage (egg or larva) is determined by the growth module, and the right temperature range is
applied to the particle.

7.2.2 Lethal salinity

Lethal salinity can either be provided in a CSV file (lethal_salt_file parameter), which provides
the lower and upper salinity values that can be supported by the particle as a function of age (in
hours). The file must have the following format:

Time(hour);Fresh salinity (PSU);Salty salinity (PSU)
0;35;40
48;30;40
96;30;45

In this case, three age classes will be considered: [0, 48[, [48, 96[and [96,∞[
If the lethal_salt_file parameter is not defined, single values will be used independently of the age.
These values are provided in the fresh_lethal_salinity_egg and saline_lethal_salinity_egg
parameters.

Note that the salinity_field_ parameter, providing the name of the salinity variable, must also be
provided.

7.3 Buoyancy

The buoyancy module allow to vertically displace a particle, depending on it’s density and on the sea
water density, following Parada et al. (2003).

The buoyancy-induced vertical velocity of the particle is given by:

𝑊𝑏𝑢𝑜𝑦 = 1
24 × 𝑔 × 𝑎 × 𝑏 × 𝜌𝑤𝑎𝑡𝑒𝑟 − 𝜌𝑝𝑎𝑟 𝑡

𝜌𝑤𝑎𝑡𝑒𝑟
𝜇−1 log (2𝑎𝑏 + 0.5) ;

with 𝑎 and 𝑏 the semi-major axis and semi-minor axis of an ellipse (mean_major_axis and
mean_minor_axis parameters), 𝜇 the molecular viscosity (molecular_viscosity parameter), 𝜌𝑤𝑎𝑡𝑒𝑟
the water density, 𝜌𝑝𝑎𝑟 𝑡 the particle density and 𝑔 the gravitational acceleration (𝑐𝑚.𝑠−2).

44

If the particle density varies with age, it can be provided in a CSV file (density_file parameter),
formatted as follows:

Age(hour);Density (g/cm3)
0;1.0235625
24;1.02374
48;1.023335
60;1.0239
66;1.025672

If the density_file parameter is not found, a constant density will be assumed (particle_density
parameter).

The buoyancy process is only applied for the early life stages. If the growth process is disabled, it
is controlled by the age_max parameter (provided in days). If this parameter is not provided, the
buoyancy process will always be applied.

If the growth process is enabled, the application of the buoyancy module will be automatically man-
aged.

7.4 Daily vertical migration

The MigrationAction.java manages the daily migration of the particles. It is done by providing
daytime and nighttime depths, and the timing of the sunset and sunrise.

If the daytime_depth_file parameter is defined, it provides the depth of the particle during daytime.
It is formatted as follows:

Age (day);Depth (m)
0.0;-20
3.0;-25
5.0;-30
8.0;-35

If this parameter is not found, a constant daytime depth, provided by the daytime_depth parameter,
is assumed.

Same thing for the nighttime depths, which can be set by either the nighttime_depth_file or the
nighttime_depth parameters.

The sunset and sunrise hours are set by the sunset and sunrise parameters, which must have a
HH::mm format.

45

If the growth module is deactivated, the user must provide the minimum age (in days) at which the
particle starts to migrate (age_min parameter). If the growth module is activated, it manages the
activation or deactivation of the daily migration.

Warning

When the target depth is greater than the total depth, the particle does not move.

7.5 Ontogenetic vertical migration

The ontogenetic migration module controls the migration to different habitats as a function of
age. Its implementation in Ichthyop follows the CMS one. It uses the CMS configuration file
(cms_ovm_config_file parameter), which is formatted as follows:

nTime
nDepth
z1 z2 z3 z4 z5 z6 ... znDepth
t1 t2 t3 t4 t5 t6 ... tnTime

P1,1 P1,2 ... P1,nTime
P2,1 P2,2 ... P2,nTime
P3,1 P3,2 ... P3,nTime

...
PnDepth,1 PnDepth,2 ... PnDepth,nTime

The first line provides the number of time steps in the CMS file, the second line provides the number
of vertical levels in the CMS file. The third line provides the depth values and the fourth lines provides
the time step values.

The remaining lines provide the probability matrix 𝑃𝑧,𝑡 .

Note

The sum of the probability matrix along the depth dimension should equal 100.

At each time step, the index of the CMS time step, 𝑘, is determined by comparing the simulation and
CMS times as follows:

𝑡𝐶𝑀𝑆(𝑘) < 𝑡 ≤ 𝑡𝐶𝑀𝑆(𝑘 + 1)

46

When the CMS time index changes, all the particles are randomly distributed on the vertical, following
the probability distribution of the given CMS time. If the CMS time index remains unchanged, nothing
is done.

7.6 Wind drift

The wind-drift is implemented in the WindDriftFileAction.java class. This class requires that 2D
(time, latitude, longitude) wind fields are provided. This is done by providing a input_path and a
file_filter parameter, which specify the location and names of the wind files.

The user also provides field_time, wind_u, wind_v, longitude, latitude parameters, which spec-
ify the names of the time, zonal wind, meridional wind, longitude and latitude variables in the NetCDF
files.

The user also provides a depth_application parameter, which specifies the depth at which the wind
will impact the trajectories (only valid for 3D simulations), a wind_factor (𝐹 , multiplication factor),
an angle (𝜃) and a wind_convention parameter (𝜀, +1 if convention is ocean-based, i.e. wind-to, -1 if
convention is atmospheric based, i.e. wind-from).

The changes in particle longitude (𝜆) and latitude (𝜙) is provided as follows:

Δ𝜆0 =
Δ𝑡 × 𝑈𝑊

𝑅𝜋
180 × cos(𝜋𝜙180)

Δ𝜙0 = Δ𝑡 × 𝑉𝑊
𝑅𝜋
180

Δ𝜆 = 𝜀 × 𝐹 × (Δ𝜆0 × cos (𝜃𝜋
180) − Δ𝜙0 × sin (𝜃𝜋

180))

Δ𝜙 = 𝜀 × 𝐹 × (Δ𝜆0 × sin (𝜃𝜋
180) + Δ𝜙0 × sin (𝜃𝜋

180))

Note

𝑅 is the Earth Radius and equals 6367.74 km. In the code, 𝑅𝜋180 , which is the distance in m of a 1

degree cell, is approximated to 111138 m

47

7.7 Random swimming

Ichthyop allows particles to randomly swim. This is achieved by using the SwimmingAction.java.
The velocity may vary with the age of the particle.

The user provides a CSV absolute velocity file (velocity_file parameter), which must me formatted
as follows:

Age (days);Speed (m/s)
0;0.1
5;0.2
15;0.3

The user also provides a boolean parameter (constant_velocity) that specifies whether the velocity
should remain as defined in the CSV file, or if the absolute velocity should be randomly selected as
follows:

‖𝑈 ‖ = ‖𝑈 ‖𝑓 𝑖𝑙𝑒 × 𝜅

with 𝜅 a random value in the [0, 2] interval and ‖𝑈 ‖𝑓 𝑖𝑙𝑒 the velocity defined in the CSV file.

At each time-step, the zonal and meridonal velocities are defined as follows:

𝑈 = 𝜅′𝜀‖𝑈 ‖

𝑉 = 𝜀′√‖𝑈 ‖2 − 𝑈 2

with 𝜅′ a random value between 0 and 1, and 𝜀 and 𝜀′ random values either equal to 1 or -1.

7.8 Wave drift

Ichthyop can take into account the effects of waves on the particles trajectories, following the Stokes
drift equations of Stokes (2009):

𝑈𝑆 = 𝑤 × 𝑘 × 𝑎2 × exp (2 × 𝑘 × 𝑧)

In Ichthyop, the user provides zonal and meridional wave stokes drift and the wave periods. The
horizontal displacement of particles is computed as follows:

48

‖𝑈𝑤𝑎𝑣𝑒‖ = 𝑈 2𝑤𝑎𝑣𝑒 + 𝑉 2𝑤𝑎𝑣𝑒

𝜆𝑤𝑎𝑣𝑒 = ‖𝑈𝑤𝑎𝑣𝑒‖ × 𝑇𝑤𝑎𝑣𝑒

𝑘𝑤𝑎𝑣𝑒 = 2𝜋
𝜆𝑤𝑎𝑣𝑒

Δ𝑋 = 𝐹 × 𝑈𝑐𝑢𝑟 × Δ𝑡 × exp (2 × 𝑘𝑤𝑎𝑣𝑒 × 𝑧)

Δ𝑌 = 𝐹 × 𝑉𝑐𝑢𝑟 × Δ𝑡 × exp (2 × 𝑘𝑤𝑎𝑣𝑒 × 𝑧)

with 𝑈𝑤𝑎𝑣𝑒 and 𝑉𝑤𝑎𝑣𝑒 the zonal and meridional stokes components, 𝑇𝑤𝑎𝑣𝑒 the wave period, 𝑈𝑐𝑢𝑟 and
𝑉𝑐𝑢𝑟 the zonal and meridional ocean current components, 𝑧 the depth and 𝐹 a multiplication factor
provided by the user.

7.9 Coastal behaviour

7.9.1 Bouncing

In the bouncing mode, the particle will bounce on the coast. First, whether the bouncing occurs on a
meridional or a zonal coastline is determined.

In case of a meridional coastline, as shown in Figure 7.1, the calculation of the new position is per-
formed as follows.

Let’s assume that the particle is at the position (𝑥, 𝑦) and is moved at the postion (𝑥 + Δ𝑥, 𝑦 + Δ𝑦).
We suppose that

Δ𝑦 = Δ𝑦1 + Δ𝑦2, (7.1)

where Δ𝑦1 is the meridional distance between the particle and the coastline, and Δ𝑦2 is the distance
that the particle will spend on land.

In the bouncing mode, the position increment can be written as

Δ𝑐𝑜𝑟𝑦 = Δ𝑦1 − Δ𝑦2 (7.2)

By replacing Δ𝑦2 using Equation 7.1, we can write:

49

Δ𝑐𝑜𝑟𝑦 = Δ𝑦1 − (Δ𝑦 − Δ𝑦1)

Δ𝑐𝑜𝑟𝑦 = 2Δ𝑦1 − Δ𝑦

Figure 7.1: Coastal behaviour in bouncing mode.

7.10 Orientation

Active swimming has been implemented in Ichthyop following the work of Romain Chaput. Three
active swimming behaviours have been implemented: the rheotaxis orientation (i.e. against the cur-
rent), the cardinal orientation (i.e toward a given direction) and the reef orientation, i.e. orientation
toward points of interests.

These three implementations involve the computation of a swimming velocity and direction. The
former is common to all three methods, but the directions depend on the method considered.

50

7.10.1 Swimming velocity

The orientation processes all share common features. They both depend on a swimming velocity
and random directions. The methods described below differ on the way the random directions are
drafted.

Swimming velocity is computed following Staaterman, Paris, and Helgers (2012):

#|echo: false
𝑉 = 𝑉ℎ𝑎𝑡𝑐ℎ + (𝑉𝑠𝑒𝑡 𝑡 𝑙𝑒 − 𝑉ℎ𝑎𝑡𝑐ℎ)log(𝑎𝑔𝑒)/ log(𝑃𝐿𝐷)

with 𝑉ℎ𝑎𝑡𝑐ℎ and 𝑉𝑠𝑒𝑡 𝑡 𝑙𝑒 the larval velocity at hatching and settle, 𝐴 the age of the larva and 𝑃𝐿𝐷 the
transport duraction.

7.10.2 Von Mises distributions

Von Mises distribution is used in all three methods.The Von Mises distribution is given by:

𝑓 (𝜃, 𝜇, 𝜅) = exp(𝜅 cos(𝜃 − 𝜇))
2𝜋𝐼0(𝜅)

where 𝐼0(𝜅) is the modified Bessel function of the first kind of order 0, 𝜇 is angle where the distribution
is centerred and 𝜅 is the concentration parameter. The distribution is as follows:

import matplotlib.pyplot as plt
import numpy as np
from scipy.special import i0

x = np.linspace(-np.pi, np.pi, 200)

def von_misses(kappa):
mu = 0
y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))
return y

plt.figure()

for i in [0.5, 1, 2, 5, 10, 20]:
plt.plot(x, von_misses(i), label=f'$\kappa = {i}$')

plt.legend()
plt.xlim(x.min(), x.max())
plt.show()

51

3 2 1 0 1 2 3
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75 = 0.5
= 1
= 2
= 5
= 10
= 20

For computation purposes, all the Von Mises drafts performed in Ichthyop are done by using 𝑚𝑢 = 0.
The angles are thus centerred around 0. Then, the 𝑚𝑢 value is added.

Note

𝜃 = 0 is eastward, 𝜃 = 𝜋
2 is northward, etc.

7.10.3 Computation of displacement

Given a swimming velocity 𝑉 and a direction 𝜃 , the larva displacement (in 𝑚) is computed as fol-
lows:

Δ𝑋 = 𝑉 × cos(𝜃) × Δ𝑡

Δ𝑌 = 𝑉 × sin(𝜃) × Δ𝑡

with Δ𝑡 the time step. Next, the corresponding change in longitude (𝜆) and latitude (𝜑) is computed
as follows:

Δ𝜆 = Δ𝑋
111138 × cos 𝜑

52

Δ𝜑 = Δ𝑌
111138

7.10.4 Cardinal orientation

In cardinal orientation, the user provides a fixed heading 𝜃𝑐𝑎𝑟𝑑 and a fixed 𝜅 parameter. Then, at each
time step, a new angle is randomly drafted following a Von Misses distribution 𝑓 (𝜃, 𝜃𝑐𝑎𝑟𝑑 , 𝜅).
import xarray as xr
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import os
from glob import glob
import matplotlib.pyplot as plt
import numpy as np
import matplotlib as mpl

config = 'card'

if os.path.isdir('ichthyop_output'):
pattern = os.path.join('ichthyop_output', config, '*nc')

else :
pattern = os.path.join('..', '..', 'ichthyop_output', config, '*nc')

pattern

filelist = glob(pattern)
filelist

data = xr.open_mfdataset(filelist, decode_times=False)
data

+
lon = data['lon'].values
lat = data['lat'].values
mort = data['mortality'].values

lon = np.ma.masked_where(mort > 0, lon)
lat = np.ma.masked_where(mort > 0, lat)
ntime, ndrifters = lon.shape

+
time = np.arange(ntime)

53

drifters = np.arange(ndrifters)

d2d, t2d = np.meshgrid(drifters, time)

+
plt.figure()

projin = ccrs.PlateCarree()
projout = ccrs.PlateCarree()

ax = plt.axes(projection = projout)
ax.scatter(lon[:, :], lat[:, :], c=t2d, marker='.', transform=projin, s=0.5, cmap=mpl.colormaps['jet'])
feat = ax.add_feature(cfeature.LAND)
feat = ax.add_feature(cfeature.COASTLINE)
ax.set_extent([49, 55.25, -13.13, -9.45], crs=projin)

7.10.5 Rheotaxis orientation

In the rheotaxis orientation method, the particles swim against the current. The user only provides
a kappa parameter.

First, the angle of the current is computed as follows:

𝜃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = arctan 2(𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑈𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

Then, the angle that the particle must follow is given by adding 𝜋 :

54

𝜃𝑑𝑖𝑟𝑒𝑐𝑡 𝑖𝑜𝑛 = 𝜃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝜋

Finally, a random angle is picked up following a Von Mises distribution 𝑓 (𝜃, 𝜃𝑑𝑖𝑟𝑒𝑐𝑡 𝑖𝑜𝑛, 𝜅𝑟𝑒𝑒𝑓)
(ref-rheo)=

import xarray as xr
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import os
from glob import glob
import matplotlib.pyplot as plt
import numpy as np
import matplotlib as mpl

config = 'rheo'

if os.path.isdir('ichthyop_output'):
pattern = os.path.join('ichthyop_output', config, '*nc')

else :
pattern = os.path.join('..', '..', 'ichthyop_output', config, '*nc')

pattern

filelist = glob(pattern)
filelist

data = xr.open_mfdataset(filelist, decode_times=False)
data

+
lon = data['lon'].values
lat = data['lat'].values
mort = data['mortality'].values

lon = np.ma.masked_where(mort > 0, lon)
lat = np.ma.masked_where(mort > 0, lat)
ntime, ndrifters = lon.shape

+
time = np.arange(ntime)
drifters = np.arange(ndrifters)

55

d2d, t2d = np.meshgrid(drifters, time)

+
plt.figure()

projin = ccrs.PlateCarree()
projout = ccrs.PlateCarree()

ax = plt.axes(projection = projout)
ax.scatter(lon[:, :], lat[:, :], c=t2d, marker='.', transform=projin, s=0.5, cmap=mpl.colormaps['jet'])
feat = ax.add_feature(cfeature.LAND)
feat = ax.add_feature(cfeature.COASTLINE)
ax.set_extent([49, 55.25, -13.13, -9.45], crs=projin)

7.10.6 Reef orientation

In the reef orientation method, the larva will target the closest target area (for instance coral reef).
These areas are defined in an XML zone file by a polygon and a zone-specific 𝜅 parameter. The user
also provides the sensory detection threshold of the larva (maximum detection distance 𝛽).
If the distance between the particle and the barycenter of the closest reef (𝐷) is below the detection
thereshold 𝛽 , the larva will swim in the direction of the reef.

(ref-orientation)=

56

import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.size'] = 15

plt.figure(figsize = (10, 10))

xnew = 0
ynew = 0

#draw point at orgin
plt.plot(xnew, ynew, color = 'red', marker = 'o')
plt.gca().annotate('P_{t}', xy=(0 + 0.05, 0 - 0.07), xycoords='data', color='red')

#draw circle
r = 1.5
angles = np.linspace(0 * np.pi, 2 * np.pi, 100)
xs = r * np.cos(angles)
ys = r * np.sin(angles)
plt.plot(xs, ys, color = 'k', ls='--', lw=0.5)

angle_old = np.pi / 6.
rold = 1.
xold = rold * np.cos(angle_old)
yold = rold * np.sin(angle_old)

plt.plot(xold, yold, marker='o', color='blue')
plt.gca().annotate('$P_{t - 1}$', xy=(xold + 0.05, yold), xycoords='data', color='blue')

angle_reef = np.pi + np.pi / 3.
print(np.rad2deg(angle_reef))
rreef = 1
xreef = rreef * np.cos(angle_reef)
yreef = rreef * np.sin(angle_reef)
print(yreef)

plt.plot(xreef, yreef, marker='o', color='orange')
plt.gca().annotate('R', xy=(xreef + 0.1, yreef), xycoords='data', color='orange')

plt.gca().annotate(r'D', xy=(0.5*(xreef) + 0.02, 0.5*yreef), xycoords='data', color='orange', ha='left')

plt.axvline(xnew, color='k', ls='--', lw=0.5)

57

plt.axhline(ynew, color='k', ls='--', lw=0.5)

p = np.polyfit([xold, xnew], [yold, ynew], deg=1)
xtemp = np.linspace(xold, xold -2, 100)
plt.plot(xtemp, np.polyval(p, xtemp), color='black', ls='--')

angle_current = angle_old + np.pi
tmp_angle = np.linspace(0, angle_current, 100)
rtmp = 0.2
plt.plot(0 + rtmp * np.cos(tmp_angle), 0 + rtmp * np.sin(tmp_angle), color='k', ls='--')
plt.gca().annotate(r'θ_{actual}', xy=(xnew + 0.2, ynew+0.05), xycoords='data', color='k')

plt.plot([xnew, xreef], [ynew, yreef], color='orange', ls='--')
angle_current = angle_reef
tmp_angle = np.linspace(0, angle_current, 100)
rtmp = 0.3
plt.plot(0 + rtmp * np.cos(tmp_angle), 0 + rtmp * np.sin(tmp_angle), color='orange', ls='--')
plt.gca().annotate(r'θ_{reef}', xy=(xnew - 0.3, ynew+0.1), xycoords='data', color='orange',ha='right')

angle_current = angle_old + np.pi
tmp_angle = np.linspace(angle_current, angle_reef, 100)
rtmp = 0.4
plt.plot(0 + rtmp * np.cos(tmp_angle), 0 + rtmp * np.sin(tmp_angle), color='plum', ls='--')
plt.gca().annotate(r'$\theta_{turning}$', xy=(-0.43, -0.34), xycoords='data', color='plum')

off = 0.05
plt.xlim(xreef - off, xold + off)
plt.ylim(yreef - off, yold + off)
plt.gca().set_aspect('equal')
plt.axis('off')
plt.show()

239.99999999999997
-0.8660254037844384

58

Pt

Pt 1

R

D

actual

reef

turning

First, the angle of the current trajectory, 𝜃𝑎𝑐𝑡𝑢𝑎𝑙 , is computed by using the particle position at the
previous time step (blue point) and the actual position (red point).

Δ𝑋 = (𝑋𝑡−1 − 𝑋𝑡)

Δ𝑌 = (𝑌𝑡−1 − 𝑌𝑡)

𝜃𝑎𝑐𝑡𝑢𝑎𝑙 = arctan 2(Δ𝑌 , Δ𝑋) + 𝜋

59

The direction toward the reef, 𝜃𝑟𝑒𝑒𝑓 is also computed.

Δ𝑋 = (𝑋𝑟𝑒𝑒𝑓 − 𝑋𝑡)

Δ𝑌 = (𝑌𝑟𝑒𝑒𝑓 − 𝑌𝑡)

𝜃𝑟𝑒𝑒𝑓 = arctan 2(Δ𝑌 , Δ𝑋)

Warning

The angles are computed in the (𝑋 , 𝑌) space. Therefore, longitude and latitude coordinates are
converted in (𝑋 , 𝑌) using the latlon2xy Dataset methods.

The turning angle 𝜃𝑡𝑢𝑟𝑛𝑖𝑛𝑔 is given by:

𝜃𝑡𝑢𝑟𝑛𝑖𝑛𝑔 = 𝜃𝑟𝑒𝑒𝑓 − 𝜃𝑎𝑐𝑡𝑢𝑎𝑙

The turning angle is then ponderated by the ratio of the distance from the reef to the detection
threshold as follows:

𝜃𝑝𝑜𝑛𝑑𝑒𝑟𝑎𝑡𝑒𝑑 = (1 − 𝐷
𝛽) 𝜃𝑡𝑢𝑟𝑛𝑖𝑛𝑔

𝜃𝑝𝑜𝑛𝑑𝑒𝑟𝑎𝑡𝑒𝑑 = (1 − 𝐷
𝛽) (𝜃𝑟𝑒𝑒𝑓 − 𝜃𝑎𝑐𝑡𝑢𝑎𝑙)

Therefore, the closest to the reef, the strongest the turning angle.

Then, a random angle is picked up following a Von Mises distribution 𝑓 (𝜃, 𝜃𝑝𝑜𝑛𝑑𝑒𝑟𝑎𝑡𝑒𝑑 , 𝜅𝑟𝑒𝑒𝑓)
An example of a trajectory is provided below. In this case, two target destinations are provided (black
boxes). The same 𝜅 value was used for both ares (1.2) and the 𝛽 parameter has been set equal to 3
km.

(ref-orientation-2)=

60

import xarray as xr
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import os
from glob import glob
import matplotlib.pyplot as plt
import numpy as np
import matplotlib as mpl

config = 'reef'

if os.path.isdir('ichthyop_output'):
pattern = os.path.join('ichthyop_output', config, '*nc')

else :
pattern = os.path.join('..', '..', 'ichthyop_output', config, '*nc')

pattern

filelist = glob(pattern)
filelist

data = xr.open_mfdataset(filelist, decode_times=False)
data

+
lon = data['lon'].values
lat = data['lat'].values
mort = data['mortality'].values

lon = np.ma.masked_where(mort > 0, lon)
lat = np.ma.masked_where(mort > 0, lat)
ntime, ndrifters = lon.shape

+
time = np.arange(ntime)
drifters = np.arange(ndrifters)

d2d, t2d = np.meshgrid(drifters, time)

+
plt.figure()

projin = ccrs.PlateCarree()

61

projout = ccrs.PlateCarree()

ax = plt.axes(projection = projout)
ax.scatter(lon[:, :], lat[:, :], c=t2d, marker='.', transform=projin, s=0.5, cmap=mpl.colormaps['jet'])
feat = ax.add_feature(cfeature.LAND)
feat = ax.add_feature(cfeature.COASTLINE)
xp = np.array([51.625, 52.625, 52.625,51.625, 51.625])
yp = np.array([-1.179878E1, -1.179878E1, -1.079878E1, -1.079878E1, -1.179878E1])
ax.plot(xp, yp, transform=projin, color='k', ls='--')
xp = np.array([51.625, 52.625 - 0.5, 52.625 - 0.5,51.625, 51.625]) - 1
yp = np.array([-1.179878E1 + 0.5, -1.179878E1 + 0.5, -1.079878E1, -1.079878E1, -1.179878E1 + 0.5]) - 0.25
ax.plot(xp, yp, transform=projin, color='k', ls='--')
ax.set_extent([49, 55.25, -13.13, -9.45], crs=projin)

62

Part III

Developer documentation

63

In this section, the Ichthyop console is described.

64

8 Manager initialization

When an Ichthyop simulation is launched, managers are mobilized in the following order
(cf. SimulationManager.mobiliseManagers() method):

Figure 8.1: Order in which managers are mobilized.

This order is the one in which the managers will be setup and then initialized.

During the setup process, the setupPerformed methods, implemented on all the manager classes,
will be called.

65

After this setup process, the managers will be initialized. This will be achieved by calling the
initializePerformed methods, implemented on all the manager classes.

66

9 Particles

Ichthyop particles (Particle.java class) contains the attributes described in Table 9.1.

Table 9.1: Particle state variables

Variable Description Type Units

x Particle x position within the grid float, ∈ [0, 𝑁𝑥 − 1]
y Particle y position within the grid float, ∈ [0, 𝑁𝑦 − 1]
z Particle z position within the grid float, ∈ [0, 𝑁𝑧 − 1]
dx Particle increment/decrement of x

position
float

dy Particle increment/decrement of y
position

float

dz Particle increment/decrement of z
position

float

lat Particle longitude float Degrees East
lon Particle latitude float Degrees

North
depth Particle depth float, < 0 m
index Particle index int, ∈ [0, 𝑁𝑝𝑎𝑟 𝑡 − 1]
age Particle age int seconds
deathCause Mortality status ParticleMortality
living True if a particle is alive bool
locked True if a particle is locked bool
layers List of additional particle layers List<ParticleLayer>

When using Ichthyop with additional processes, such as growth or DEB processes, additional vari-
ables need to be tracked.

This is done by firsr creating a layer class, which should extend the ParticleLayer.java class. An
exemple if provided as follows:

package org.previmer.ichthyop.particle;

public class LengthParticleLayer extends ParticleLayer {

67

private double length;

public LengthParticleLayer(IParticle particle) {
super(particle);

}

@Override
public void init() {

length = 0;
}

public double getLength() {
return length;

}

public void incrementLength(double dlength) {
length += dlength;

}
}

This class contains additional particle attributes (here, for instance length) and methods that can
return and modify these attributes.

These new variables can be accessed as follows:

LengthParticleLayer lengthLayer = (LengthParticleLayer) particle.getLayer(LengthParticleLayer.class);
lengthLayer.setLength(length_init);

During the first call to the getLayer method applied to a given layer class, the latter will be instanci-
ated, initialized and add to the particle’s layers list attribute, as shown below.

68

Order in which managers are mobilized.

69

10 Grid management

10.0.1 NEMO grid

In this section, the main features of the NEMO grid and the implications in Ichthyop are summa-
rized.

10.0.1.1 Horizontal

10.0.1.1.0.1 Computation domain

In the NEMO grid, the computation domain extends from the western edge of the western T cell (i=0)
to the eastern edge of the eastern T cells (i=nx), and from the southern edge of the southern T cells
(j=0) to the northern edge of the nothern T cells (j=ny).

10.0.1.1.0.2 Indexing

The horizontal layout of the NEMO grid is as follows:

70

Tracer points (T points) are stored at the center of the cell. Zonal velocities (U points) are stored on
the eastern face, while meridional velocities (V points) are stored on the northern face. U, V and T
points have the same number of elements!

71

10.0.1.1.0.3 Scale factors

In NEMO, the zonal and meridional length of the cells are stored in the e1x and e2x variables, with
x equals to t, u or v depending on the point considered.

10.0.1.1.0.4 Land-sea mask

For a particle at a given location, we determine whether it is on land as follows:

• We extract the i index of the T land-sea mask to use by computing round(x - 0.5).
• We extract the j index of the T land-sea mask to use by computing round(y - 0.5).
• We extract the mask value at the (i, j) location.

10.0.1.1.0.5 Close to coast

To determine whether a particle is close to coast, we extract the three neighbouring T cells. If one of
them is land, then it assumed to be close to coast.

72

10.0.1.1.0.6 Is On Edge

The particle is considered to be out of the domain if the y value is greater than ny - 0.5 (no possible
interpolation of T points) or less than 1 (no possible interpolation of V points).

If there is no zonal cyclicity, the particle is also considered to be out of the domain if the x value is
greater than nx - 0.5 (no possible interpolation of T points) or less than 1 (no possible interpolation
of U points).

73

10.0.1.1.0.7 Zonal cyclicity

For regional simulations, there is no zonal cyclicty. On the other hand, for global NEMO simulations,
which runs on the ORCA grid, the zonal cyclicity is as follows (indexes are provided for T points):

74

Therefore:

• if 𝑥 ≤ 1, the particle is moved at 𝑁𝑥 − 2 + 𝑥
• if 𝑥 ≥ 𝑛𝑥 − 1, the particle is moved at 𝑥 − 𝑁𝑥 + 2)

10.0.1.1.0.8 Interpolation

Interpolation of T variables

Given a given position index of a particle with the T grid, the determination of the interpolation is
done as follows:

• First, the i index of the T grid column left of the particle is found. This is done by using floor
on the x - 0.5 value. The removing of 0.5 is to convert the x value from the computational
grid to the T grid.

• Then, the j index of the T grid line below the particle is found. This is done by using floor on
the y - 0.5 value. The removing of 0.5 is to convert the y value from the computational grid
to the T grid.

75

• The area to consider is defined by the [i, i + 1] and [j, j + 1] squares.

An illustration is given below

Interpolation of U variables

Interpolation of U variables is done as follows:

• First, the i index of the U point left of the particle is found by using floor(x - 1). The -1 is
to move from the computation grid to the U grid system.

• Then, the j index of the U grid line below the particle is found. This is done by using floor on
the y - 0.5 value. The -0.5 is to move from the computation grid to the U grid system.

• The box used to average the variable is therefore defined by the [i, i + 1] and [j, j + 1]
squares.

76

Interpolation of V variables

Interpolation of V variables is done as follows:

• First, the i index of the V point left of the particle is found by using floor(x - 0.5). The -0.5
is to move from the computation grid to the U grid system.

• Then, the j index of the V grid line below the particle is found. This is done by using floor on
the y - 1 value. The -1 is to move from the computation grid to the U grid system.

• The box used to average the variable is therefore defined by the [i, i + 1] and [j, j + 1]
squares.

77

10.0.1.2 Vertical

10.0.1.2.0.1 Indexing

The original NEMO vertical indexing system is shown below:

78

Index starts at 0 (at the surface) and ends at 𝑁𝑧 −1 at depth. There are as many W levels as T levels. In
NEMO, the T point situated at 𝑁𝑧−1 is alwaysmasked. W levels are located above the corresponding
T points.

Therefore, in Ichthyop, only the first 𝑁𝑧 − 1 T points are read, while all the 𝑁𝑧 W points are read. This
is show below:

79

Vertical indexing system as used in Ichthyop. Red dashed lines represent the W levels (cell edges),
whose index is given in the gray box.

There is now 𝑁𝑧 W levels but 𝑁𝑧 − 1 T levels.

Furthermore, since in Ichthyop the first index corresponds to the seabed, the arrays are vertically
flipped. Consequently, the final structure of the vertical grid is as follows:

80

Corrected vertical indexing, with k=0 associated with the bottom depth.

10.0.1.2.0.2 Land-sea mask

81

Vertical land-sea mask

10.0.1.2.0.3 Interpolation

T variables

82

Vertical interpolation of T variables.

W variables

83

:align: center :width: 250 px

Vertical interpolation of T variables.

10.0.2 ROMS grid

In this section, the main features of the ROMS grid and the implications in Ichthyop are summa-
rized.

10.0.2.1 Horizontal

The horizontal grid layout of the ROMS model is shown below:

84

Figure 10.1: ROMS staggered grid structure

Contrary to NEMO andMARS, the U points are located on thewestern face, while velocities are located
on the southern faces. However, However, as indicated on the Wikiroms page, while the T interior
domain has (𝑁𝑦 , 𝑁𝑥) dimensions, the U domain is (𝑁𝑦 , 𝑁𝑥−1) points while and V domain is (𝑁𝑦−1, 𝑁𝑥)
points. Indeed, the first row for V and the first column for U are discarded. Therefore, the structure
of the input ROMS grid is as follows:

85

https://www.myroms.org/wiki/Numerical_Solution_Technique

Figure 10.2: ROMS grid as interpreted by Ichthyop

10.0.2.1.1 Land-sea mask

86

Figure 10.3: Land-sea masking for ROMS grid

10.0.2.1.2 Interpolation

10.0.2.1.2.1 T interpolation

Given a given position index of a particle with the T grid, the determination of the interpolation is
done as follows:

• First, the i index of the T grid column left of the particle is found. This is done by using floor
on the x - 0.5 value. The removing of 0.5 is to convert the x value from the computational
grid to the T grid.

• Then, the j index of the T grid line below the particle is found. This is done by using floor on
the y - 0.5 value. The removing of 0.5 is to convert the y value from the computational grid
to the T grid.

• The area to consider is defined by the [i, i + 1] and [j, j + 1] squares.

An illustration is given below

87

Figure 10.4: Interpolation of T points from ROMS grid

10.0.2.1.2.2 U interpolation

Interpolation of U variables is done as follows:

• First, the i index of the U point left of the particle is found by using floor(x - 1). The -1 is
to move from the computation grid to the U grid system.

• Then, the j index of the U grid line below the particle is found. This is done by using floor on
the y - 0.5 value. The -0.5 is to move from the computation grid to the U grid system.

• The box used to average the variable is therefore defined by the [i, i + 1] and [j, j + 1]
squares.

88

Figure 10.5: Interpolation of U points from ROMS grid

10.0.2.1.2.3 V interpolation

Interpolation of V variables is done as follows:

• First, the i index of the V point left of the particle is found by using floor(x - 0.5). The -0.5
is to move from the computation grid to the U grid system.

• Then, the j index of the V grid line below the particle is found. This is done by using floor on
the y - 1 value. The -1 is to move from the computation grid to the U grid system.

• The box used to average the variable is therefore defined by the [i, i + 1] and [j, j + 1]
squares.

89

Figure 10.6: Interpolation of V points from ROMS grid

10.0.2.1.3 Is on edge

A particle is considered to be out of domain when 𝑥 ≤ 1 (no possible interpolation of U on the western
face), when 𝑦 ≥ 𝑁𝑥 − 1 (no possible interpolation of U on the eastern face), when 𝑦 ≤ 1 (no possible
interpolation of V on the southern domain) or when 𝑦 ≥ 𝑁𝑦 − 1 (no possible interpolation of V on
the northern part of the domain).

The excluded domain is represented below:

90

Figure 10.7: Excluded domain in the Ichthyop ROMS simulations.

10.0.2.2 Vertical

10.0.2.2.1 Sigma coordinate

The vertical coordinate system of ROMS is discussed on WikiRoms and shown below.

91

https://www.myroms.org/wiki/Vertical_S-coordinate

Figure 10.8: Vertical grid in the ROMS model

The vertical coordinate in ROMS is 𝜎 , which varies between −1 (ocean bottom) and 0 (ocean sur-
face). There are two implementations of the 𝜎 to 𝑧 conversion, both using sea-level anomalies (𝜁) and
bathymetry (ℎ).

92

The first one is available in ROMS since 1999 and is given by:

𝑧(𝑥, 𝑦 , 𝜎 , 𝑡) = 𝑆(𝑥, 𝑦 , 𝜎) + 𝜁 (𝑥, 𝑦 , 𝑡) [1 + 𝑆(𝑥, 𝑦 , 𝜎)
ℎ(𝑥, 𝑦)]

with

𝑆(𝑥, 𝑦 , 𝜎) = ℎ𝑐 𝜎 + [ℎ(𝑥, 𝑦) − ℎ𝑐] 𝐶(𝜎)

and ℎ𝑐 and 𝐶(𝜎) parameters provided in the grid file.

The second transform, called UCLA-ROMS, is given by:

𝑧(𝑥, 𝑦 , 𝜎 , 𝑡) = 𝜁 (𝑥, 𝑦 , 𝑡) + [𝜁 (𝑥, 𝑦 , 𝑡) + ℎ(𝑥, 𝑦)] 𝑆(𝑥, 𝑦 , 𝜎)

with

𝑆(𝑥, 𝑦 , 𝜎) = ℎ𝑐 𝜎 + ℎ(𝑥, 𝑦) 𝐶(𝜎)
ℎ𝑐 + ℎ(𝑥, 𝑦)

and ℎ𝑐 and 𝐶(𝜎) parameters provided in the grid file.

It can be rewritten in the same form as the original one.

𝑧(𝑥, 𝑦 , 𝜎 , 𝑡) = ℎ(𝑥, 𝑦)𝑆(𝑥, 𝑦 , 𝜎) + 𝜁 (𝑥, 𝑦 , 𝑡) + 𝜁 (𝑥, 𝑦 , 𝑡)𝑆(𝑥, 𝑦 , 𝜎)

𝑧(𝑥, 𝑦 , 𝜎 , 𝑡) = ℎ(𝑥, 𝑦)𝑆(𝑥, 𝑦 , 𝜎) + 𝜁 (𝑥, 𝑦 , 𝑡) [1 + 𝑆(𝑥, 𝑦 , 𝜎)]

𝑧(𝑥, 𝑦 , 𝜎 , 𝑡) = ℎ(𝑥, 𝑦)𝑆(𝑥, 𝑦 , 𝜎) + 𝜁 (𝑥, 𝑦 , 𝑡) [1 + ℎ(𝑥, 𝑦)𝑆(𝑥, 𝑦 , 𝜎)
ℎ(𝑥, 𝑦)]

In this form, both formulations can be expressed as:

𝑧(𝑥, 𝑦 , 𝜎 , 𝑡) = 𝐻0(𝑥, 𝑦 , 𝜎) + 𝜁 (𝑥, 𝑦 , 𝑡) [1 + 𝐻0(𝑥, 𝑦 , 𝜎)
ℎ(𝑥, 𝑦)]

with 𝐻0 which is constant overt time, and which varies between the classical and the UCLA formula-
tions. For the classical formulation:

𝐻0(𝑥, 𝑦 , 𝜎) = 𝑆(𝑥, 𝑦 , 𝜎)

93

For the UCLA formulation:

𝐻0(𝑥, 𝑦 , 𝜎) = ℎ(𝑥, 𝑦)𝑆(𝑥, 𝑦 , 𝜎)

10.0.3 MARS grid

In this section, the main features of the MARS grid and the implications in Ichthyop are summa-
rized.

10.0.3.1 Horizontal

In MARS, the 3D structure of the grid is the same as the one in NEMO:

Figure 10.9: MARS staggered grid structure

94

10.0.3.2 Vertical

The vertical coordinate of theMars model is called 𝜎 , which varies from -1 at seabed to 0 at the surface.
In MARS, if the number of T points on the vertical is kmax, the number of W points is kmax + 1. For
a given T cell located at the k index, the corresponding W point is located below. k=0 corresponds to
the bottom, while k=kmax corresponds to the surface.

Figure 10.10: MARS grid structure.

The conversion from 𝜎 to 𝑧, using generalized 𝜎 levels, is given in Dumas (2009) (equation 1.29):

𝑧 = 𝜉 (1 + 𝜎) + 𝐻𝑐 × [𝜎 − 𝐶(𝜎)] + 𝐻𝐶(𝜎)

where 𝜉 is the free surface, 𝐻 is the bottom depth and 𝐻𝑐 is either the minimum depth or a shallow
water depth above which we wish to have more resolution. 𝐶 is defined as (equation 1.30):

𝐶(𝜎) = (1 − 𝛽)sinh(𝜃𝜎)
sinh(𝜃) + 𝛽

tanh[𝜃(𝜎 + 1
2)] − tanh(𝜃2)

2 tanh(𝜃2)

However, if the 𝐻𝑐 variable is not found, the following formulation will be used:

95

https://mars3d.ifremer.fr/docs/_static/2009_11_22_DocMARS_GB.pdf

𝑧 = 𝜉 (1 + 𝜎) + 𝜎𝐻

Note that the 𝐶(𝜎) variable is read from the input file.

96

11 Adding new processes

To Do

97

12 Adding output variable

When including new processes to Ichthyop (cf. Chapter 11), the storage of additional variable may
be required. For instance, in the growth processes (see Section 7.1), in which particle length is a state
variable, it is necessary to save length in the output NetCDF file. This is done by creating a new Java
class associated with a property file.

12.1 Creating java class

Creating the Java class depends on what type of variable you want to save, as shown in Figure 12.1.

12.1.1 General case

Adding newvariables can be achieved by creating new tracker class in the org.previmer.ichthyop.io
package, which inherits from the AbstractTracker java class. It must override the 4 methods, as
shown below for the LengthTracker class:

public class LengthTracker extends AbstractTracker {

@Override
public void setDimensions() {
}

@Override
public void addRuntimeAttributes() {
}

@Override
public Array createArray() {
}

@Override
public void track() {
}

98

Figure 12.1: Adding a new tracker

99

}

setDimensions defines the dimensions associated with the variable. Time and drifter dimensions
must be added by using the addTimeDimension() and addDrifterDimension() methods, respec-
tively. A zone dimension can be added by calling the addZoneDimension(TypeZone zoneType)
method. Custom dimensions can be added by using the addCustomDimension(Dimension dim)
method.

addRuntimeAttributes defines additional attributes associated with the variable to be saved. At-
tributes are added by calling the addAttribute(Attribute attribute) method.

Note

Compulsory attributes and variable names are defined using properties files, see Section 12.2

createArray initializes the Array object that will be used to store the output variable. The dimen-
sions of the array depends on the dimension of the output variables.

track() is the method that is called at each output time-step and which writes the variable in the
NetCDF.

12.1.2 Simple case

Usually, new variables consist in tracking one single particle property, such as length for instance. In
this case, the new tracker class can inherits either from the FloatTracker or the IntegerTracker
classes as follows:

public class LengthTracker extends FloatTracker {

@Override
float getValue(IParticle particle) {

...
}

}

In this case, the onlymethod to define is the getValue(IParticle particle), which specifies which
particle’s state variable is to be extracted for the given tracker.

100

12.2 Creating property file

In addition to the tracker java class, a property file must be included in the io/resources/
folder. The name of this file must me the same as the Java class, except for the .properties
suffix. For instance, the property file associated with the LengthTracker.java class will be named
LengthTracker.properties. It must contain the following three lines:

tracker.shortname = length
tracker.longname = particle length
tracker.unit = millimeter

tracker.shortname is the name of the variable in the NetCDF, tracker.longname and
tracker.unit are the values of the variable’s longname and unit attributes.

101

13 References

Fonds, M. 1979. “Laboratory Observations on the Influence of Temperature and Salinity on Devel-
opment of the Eggs and Growth of the Larvae of Solea Solea (Pisces).” Mar. Ecol. Prog. Ser 1
(9).

Lett, Christophe, Philippe Verley, Christian Mullon, Carolina Parada, Timothée Brochier, Pierrick
Penven, and Bruno Blanke. 2008. “A Lagrangian Tool for Modelling Ichthyoplankton Dynamics.”
Environmental Modelling & Software 23 (9): 1210–14. https://doi.org/https://doi.org/10.1016/j.en
vsoft.2008.02.005.

Parada, C, CD Van Der Lingen, C Mullon, and P Penven. 2003. “Modelling the Effect of Buoyancy on
the Transport of Anchovy (Engraulis Capensis) Eggs from Spawning to Nursery Grounds in the
Southern Benguela: An IBM Approach.” Fisheries Oceanography 12 (3): 170–84.

Staaterman, Erica, Claire B. Paris, and Judith Helgers. 2012. “Orientation Behavior in Fish Larvae:
A Missing Piece to Hjort’s Critical Period Hypothesis.” Journal of Theoretical Biology 304 (July):
188–96. https://doi.org/10.1016/j.jtbi.2012.03.016.

Stokes, George Gabriel. 2009. “On the Theory of Oscillatory Waves.” In Mathematical and Physical
Papers, 1:197–229. Cambridge Library Collection - Mathematics. Cambridge University Press.
https://doi.org/10.1017/CBO9780511702242.013.

Tanner, Susanne E., Ana Teles-Machado, Filipe Martinho, Álvaro Peliz, and Henrique N. Cabral. 2017.
“Modelling Larval Dispersal Dynamics of Common Sole (Solea Solea) Along the Western Iberian
Coast.” Progress in Oceanography 156: 78–90. https://doi.org/https://doi.org/10.1016/j.pocean.201
7.06.005.

102

https://doi.org/10.1016/j.envsoft.2008.02.005
https://doi.org/10.1016/j.envsoft.2008.02.005
https://doi.org/10.1016/j.jtbi.2012.03.016
https://doi.org/10.1017/CBO9780511702242.013
https://doi.org/10.1016/j.pocean.2017.06.005
https://doi.org/10.1016/j.pocean.2017.06.005

	Preface
	User guide
	Getting started
	Prerequisites
	Java
	NetCDF4
	Conda environmenmt

	Downloading Ichthyop
	Using executables
	From source

	Downloading hydrodynamical files
	Running Ichthyop
	Clicking on file (Windows)
	From command line (Unix/Mac Os X)

	Ichthyop configuration
	Simulation configuration file
	Configuration blocks
	Configuration parameters
	Serial parameters

	Zone configuration file
	Time configuration
	Beginning of the simulation
	Reading NetCDF times

	Ichthyop console
	Configuration
	New configuration file
	Content of the configuration file

	Zone definition
	Adding, removing and renaming zones
	Editing a zone

	Running
	Visualize results
	Results
	Set particle color
	Make maps using Web Map Service
	Export trajectories to KMZ format

	Animation

	FAQ
	What to do when Ichthyop does not manage my ocean dataset
	What to do when Ichthyop suddenly fails to launch ?
	How to launch Ichthyop from command line ?
	What are the different coastline behaviours in Ichthyop?
	How does spatial interpolation work in Ichthyop?
	How does Ichthyop manage time ?
	How does Ichthyop interpolate the hydrodynamic dataset in time ?
	Why do I get warning ``CFL broken for W 1.208'' ?

	Documentation
	Particle release
	Stain release
	Zone release
	Text release
	Patchy release
	Surface and bottom releases
	Netcdf release

	Release schedule
	Ichthyop processes
	Growth
	Linear growth
	Sole growth

	Lethal temperature and salinity
	Lethal temperature
	Lethal salinity

	Buoyancy
	Daily vertical migration
	Ontogenetic vertical migration
	Wind drift
	Random swimming
	Wave drift
	Coastal behaviour
	Bouncing

	Orientation
	Swimming velocity
	Von Mises distributions
	Computation of displacement
	Cardinal orientation
	Rheotaxis orientation
	Reef orientation

	Developer documentation
	Manager initialization
	Particles
	Grid management
	NEMO grid
	ROMS grid
	MARS grid

	Adding new processes
	Adding output variable
	Creating java class
	General case
	Simple case

	Creating property file

	References

